MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards a Prime Factorization of Proteins

Author(s)
Radev, Simeon
Thumbnail
DownloadThesis PDF (11.88Mb)
Advisor
Jacobson, Joseph
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
A classical problem of machine learning is the interpretability of a model’s latent information processing. This is particularly the case in the richly complex field of protein analysis, whereby unique and novel insights into the structural organization of proteins can help illuminate their functional space, and in particular lead toward a factorization of the structural space into a set of motif building blocks, which completely span this universe. This thesis creates a new inference interface for performing such analysis, by leveraging the sequential learning process of a neural autoencoder to construct a decomposition of proteins as a hierarchical sequence of embedded representation vectors. The further development of this work could lead to a greater understanding of the organizational complexity of natural phenomena, and in particular, as it relates to the uniquely complex relationship between protein structures and their function.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156959
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.