MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inertial Navigation System Drift Reduction Using Scientific Machine Learning

Author(s)
McManus, Matthew
Thumbnail
DownloadThesis PDF (3.590Mb)
Advisor
Edelman, Alan
Terms of use
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Inertial Navigation Systems (INS) are crucial for accurate navigation in GPS-denied environments, but they suffer from drift errors that accumulate over time. This thesis introduces Scientific Machine Learning (SciML) as an innovative approach to mitigate INS drift by integrating physical models with machine learning algorithms. The proposed SciML architecture leverages neural networks to learn complex error patterns and relationships from simulated IMU data, outperforming conventional techniques like Kalman filtering. Utilizing a simulation-focused approach with the Julia programming language and the HighPerformance Inertial Navigation Development Repository (HIDR) library, the research generates realistic datasets encompassing diverse trajectories, sensor errors, and operational conditions. The SciML methodology incorporates data generation, INS mechanization, error modeling using neural networks, and a filtering framework that integrates the Extended Kalman Filter (EKF) with batch filtering techniques. Experimental results demonstrate the superior performance of the SciML-based INS in reducing position, velocity, and attitude errors compared to a baseline Kalman filter. This pioneering approach of fusing SciML with INS physical models holds promise for revolutionizing drift error mitigation and advancing the field of navigation systems, paving the way for more accurate, reliable, and resilient navigation in GPS-denied environments, with potential applications in aviation, robotics, and autonomous vehicles.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156966
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.