MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning Sim-to-Real Robot Parkour from RGB Images

Author(s)
Jenkins, Andrew
Thumbnail
DownloadThesis PDF (21.56Mb)
Advisor
Agrawal, Pulkit
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Advancements in quadrupedal robot locomotion have yielded impressive results, achieving dynamic maneuvers like climbing, ducking, and jumping. These successes are largely attributed to depth-based visual locomotion policies, known for their robust transferability between simulated and real-world environments (sim-to-real). However, depth information inherently lacks the semantic information present in RGB images. This thesis investigates the application of an RGB visual locomotion policy for navigating complex environments, specifically focusing on extreme parkour terrain. While RGB data offers a deeper understanding of the scene through semantic cues, it presents challenges in sim-to-real transfer due to large domain gaps. This work proposes a novel approach for training an RGB parkour policy and demonstrates that it achieves performance comparable to depth-based approaches in simulation. Furthermore, we successfully deploy and evaluate our RGB policy on real-world parkour obstacles, signifying its potential for practical applications.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156972
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.