Show simple item record

dc.contributor.advisorHorton, John J.
dc.contributor.authorManning, Benjamin S.
dc.date.accessioned2024-10-02T17:29:46Z
dc.date.available2024-10-02T17:29:46Z
dc.date.issued2024-09
dc.date.submitted2024-08-22T19:43:20.436Z
dc.identifier.urihttps://hdl.handle.net/1721.1/157089
dc.description.abstractWe present an approach for automatically generating and testing, in silico social scientific hypotheses. This automation is made possible by recent advances in large language models (LLM), but the key feature of the approach is the use of structural causal models. Structural causal models provide a language to state hypotheses, a blueprint for constructing LLM-based agents, an experimental design, and a plan for data analysis. The fitted structural causal model becomes an object available for prediction or the planning of follow-on experiments. We demonstrate the approach with several scenarios: a negotiation, a bail hearing, a job interview, and an auction. In each case, causal relationships are both proposed and tested by the system, finding evidence for some and not others. We provide evidence that the insights from these simulations of social interactions are not available to the LLM purely through direct elicitation. When given its proposed structural causal model for each scenario, the LLM is good at predicting the signs of estimated effects, but it cannot reliably predict the magnitudes of those estimates. In the auction experiment, the in silico simulation results closely match the predictions of auction theory, but elicited predictions of the clearing prices from the LLM are inaccurate. However, the LLM's predictions are dramatically improved if the model can condition on the fitted structural causal model. In short, the LLM knows more than it can (immediately) tell.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright retained by author(s)
dc.rights.urihttps://rightsstatements.org/page/InC-EDU/1.0/
dc.titleAutomated Social Science: Language Models as Scientist and Subjects
dc.typeThesis
dc.description.degreeS.M.
dc.contributor.departmentSloan School of Management
dc.identifier.orcid0009-0000-9977-2390
mit.thesis.degreeMaster
thesis.degree.nameMaster of Science in Management Research


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record