MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Implementing a Tiled Singular Value Decomposition: A Framework for Tiled Linear Algebra in Julia

Author(s)
Ringoot, Evelyne
Thumbnail
DownloadThesis PDF (10.12Mb)
Advisor
Edelman, Alan
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
High-performance computing (HPC) is essential for scientific research, enabling complex simulations and analyses across various fields. However, the specialized knowledge required to utilize HPC effectively can be a barrier for many scientists. This work introduces a hardware-agnostic, large-scale tiled linear algebra framework in Julia designed to enhance accessibility and usability without compromising performance. By providing a flexible abstraction layer, the framework simplifies the development and testing of new algorithms across diverse computing architectures. Julia language’s multiple-dispatch and type inference facilitate the development of type-agnostic, hardware-agnostic, and multi-use frameworks by allowing composability. Utilizing a tiled approach, the implemented framework improves data locality, parallelism, and scalability, making it well-suited for modern heterogeneous environments. Its practical benefits are demonstrated through the implementation of tiled QR-based singular value decomposition (SVD), demonstrating how it streamlines the development process and accelerates scientific discovery. The developed framework is used to implement an in-GPU tiled SVD and an out-of-core GPU-accelerated SVD. Furthermore, its extensibility is demonstrated by implementing a tiled QR algorithm. This work aims to democratize HPC resources by bridging the gap between advanced computational capabilities and user accessibility, empowering a broader range of scientists to fully leverage modern computing technologies.
Date issued
2024-09
URI
https://hdl.handle.net/1721.1/157092
Department
Massachusetts Institute of Technology. Center for Computational Science and Engineering
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.