MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing Wildfire Suppression: A branch-and-price-and-cut approach

Author(s)
Wachspress, Jacob
Thumbnail
DownloadThesis PDF (1008.Kb)
Advisor
Jacquillat, Alexandre
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
In periods of intense, synchronous wildfire activity, fire system managers must make rapid fire prioritization decisions over a disperse geographic area with limited suppression resources. This thesis defines the Wildfire Suppression and Crew Assignment Problem, which optimizes resource allocation to triage fires based on damage risk, crew availability and spatiotemporal dynamics. We formulate a two-sided set partitioning model on time-space-rest networks for crew assignments and time-state networks for fire damage, with linking constraints between both; this representation can encode a broad class of non-linear wildfire spread models and diverse suppression objectives. To solve it, we develop a two-sided column generation algorithm that generates fire suppression plans and crew routes iteratively. We embed it into a branch-and-price-and-cut algorithm to retrieve an optimal integer solution, using novel special-purpose cuts that augment generalized-upper-bound cover cuts and a novel branching rule that leverages dual information from the linking constraints. Extensive computational experiments show that the algorithm scales to practical problems that remain otherwise intractable. The optimization methodology can provide high-quality solutions by jointly optimizing wildfire triaging and crew assignments, resulting in enhanced wildfire suppression effectiveness.In periods of intense, synchronous wildfire activity, fire system managers must make rapid fire prioritization decisions over a disperse geographic area with limited suppression resources. This thesis defines the Wildfire Suppression and Crew Assignment Problem, which optimizes resource allocation to triage fires based on damage risk, crew availability and spatiotemporal dynamics. We formulate a two-sided set partitioning model on time-space-rest networks for crew assignments and time-state networks for fire damage, with linking constraints between both; this representation can encode a broad class of non-linear wildfire spread models and diverse suppression objectives. To solve it, we develop a two-sided column generation algorithm that generates fire suppression plans and crew routes iteratively. We embed it into a branch-and-price-and-cut algorithm to retrieve an optimal integer solution, using novel special-purpose cuts that augment generalized-upper-bound cover cuts and a novel branching rule that leverages dual information from the linking constraints. Extensive computational experiments show that the algorithm scales to practical problems that remain otherwise intractable. The optimization methodology can provide high-quality solutions by jointly optimizing wildfire triaging and crew assignments, resulting in enhanced wildfire suppression effectiveness.
Date issued
2024-09
URI
https://hdl.handle.net/1721.1/157098
Department
Massachusetts Institute of Technology. Operations Research Center
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.