Show simple item record

dc.contributor.advisorBawendi, Moungi G.
dc.contributor.authorBerkinsky, David
dc.date.accessioned2024-10-02T17:31:13Z
dc.date.available2024-10-02T17:31:13Z
dc.date.issued2024-05
dc.date.submitted2024-09-23T17:37:52.485Z
dc.identifier.urihttps://hdl.handle.net/1721.1/157111
dc.description.abstractColloidal nanocrystals (NCs), also known as quantum dots, are nanometer-sized semiconductor crystalline structures comprised of thousands to tens of thousands of atoms placing them in a world between the molecular-sized and the bulk-sized world, allowing them to harness unique qualities from both. Colloidal NCs are used in many applications including light-emitting diodes (LEDs), photovoltaics (solar cells), lasers, transistors, photocatalysis, and many more. In this thesis, I investigate the optical properties of colloidal NCs, specifically InP/ZnSe/ZnS, CdSe/CdS/ZnS, and ZnSe/ZnS NCs using a combination of ensemble and single NC photon correlation spectroscopic techniques. In the first chapter, I introduce the photophysical properties of colloidal NCs and spectroscopic techniques relevant to my studies. In the second chapter, I determine the dominant photoluminescent line shape broadening mechanisms in single InP/ZnSe/ZnS and CdSe/CdS/ZnS NCs using temperature dependent photoluminescent spectroscopic techniques. In the third chapter, I investigate the coherent emissive properties of single InP/ZnSe/ZnS and CdSe/CdS/ZnS at cryogenic temperatures, demonstrating the longest coherence time measured in a colloidal NC system to date. In the fourth chapter, I develop an ensemble third-order correlation technique to elucidate the average single ZnSe/ZnS NC triexciton efficiency and dynamics. Finally, I propose future directions in the fifth chapter, including a fourth order correlation technique to resolve absolute energy information on timescales faster than CCDbase spectroscopic techniques, and an open-access photon correlation Monte Carlo toolkit with the aim of filling education gaps and provide the colloidal NC community with a database of analytical tools that will encourage a wider audience to engage with photon correlation spectroscopy.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright retained by author(s)
dc.rights.urihttps://rightsstatements.org/page/InC-EDU/1.0/
dc.titleOptical Properties of Colloidal II-VI and III-V Semiconductor Nanocrystals: Single Nanocrystal Photon Correlation Spectroscopy
dc.typeThesis
dc.description.degreePh.D.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.orcidhttps://orcid.org/0000-0002-7143-1073
mit.thesis.degreeDoctoral
thesis.degree.nameDoctor of Philosophy


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record