MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Developing frameworks for an equitable future: from building decarbonization to generative modeling.

Author(s)
De Simone, Zoe
Thumbnail
DownloadThesis PDF (5.226Mb)
Advisor
Reinhart, Christoph
Wilson, Ashia
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
In this thesis I develop computational frameworks to understand equity under two perspectives: building decarbonization policy and generative modeling. Part 1 - Equitable building decarbonization Buildings significantly contribute to global carbon emissions, necessitating urgent decarbonization to meet 2050 climate targets. The U.S. strives for net-zero emissions by 2050, supported by federal incentives promoting building upgrades. However, financing deep retrofits for all U.S. homes exceeds available public funds. This chapter proposes a model that examines long-term carbon reduction trajectories under various incentive policies, focusing on fairness and equity. Using Oshkosh, WI, as a case study, it explores the philosophical, economic, political, and mathematical dimensions of creating just and effective decarbonization policies that ensure healthy, low-carbon homes for all. Part 2 - Equitable diffusion models Generative Text-to-Image (TTI) models, while capable of producing high-quality images, often replicate training data biases. Traditional fairness views in machine learning, which consider fairness as binary, are challenged. This section introduces DiffusionWorldViewer, a novel framework with a Web UI that enables users to analyze the underlying worldviews of diffusion models and edit model outputs to align with their personal fairness perspectives, thus promoting a diverse understanding of fairness in AI technologies.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/157353
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Architecture
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.