Show simple item record

dc.contributor.authorShah, Arjav
dc.contributor.authorPathak, Shakul
dc.contributor.authorLi, Kun
dc.contributor.authorGaraj, Slaven
dc.contributor.authorBazant, Martin Z
dc.contributor.authorGupta, Ankur
dc.contributor.authorDoyle, Patrick S
dc.date.accessioned2024-10-25T18:12:00Z
dc.date.available2024-10-25T18:12:00Z
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/1721.1/157425
dc.description.abstractNanopore-based sensing platforms have transformed single-molecule detection and analysis. The foundation of nanopore translocation experiments lies in conductance measurements, yet existing models, which are largely phenomenological, are inaccurate in critical experimental conditions such as thin and tightly fitting pores. Of the two components of the conductance blockade, channel and access resistance, the access resistance is poorly modeled. We present a comprehensive investigation of the access resistance and associated conductance blockade in thin nanopore membranes. By combining a first-principles approach, multiscale modeling, and experimental validation, we propose a unified theoretical modeling framework. The analytical model derived as a result surpasses current approaches across a broad parameter range. Beyond advancing our theoretical understanding, our framework's versatility enables analyte size inference and predictive insights into conductance blockade behavior. Our results will facilitate the design and optimization of nanopore devices for diverse applications, including nanopore base calling and data storage.en_US
dc.language.isoen
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionof10.1021/acs.nanolett.3c04997en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceAmerican Chemical Societyen_US
dc.titleA Universal Approximation for Conductance Blockade in Thin Nanopore Membranesen_US
dc.typeArticleen_US
dc.identifier.citationCite this: Nano Lett. 2024, 24, 16, 4766–4773en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentSingapore-MIT Alliance in Research and Technology (SMART)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalNano Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-10-25T18:06:32Z
dspace.orderedauthorsShah, A; Pathak, S; Li, K; Garaj, S; Bazant, MZ; Gupta, A; Doyle, PSen_US
dspace.date.submission2024-10-25T18:06:35Z
mit.journal.volume24en_US
mit.journal.issue16en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record