MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploring the Intersection of Physics Modeling and Representation Learning

Author(s)
Kitouni, Ouail
Thumbnail
DownloadThesis PDF (10.07Mb)
Advisor
Williams, Mike
Terms of use
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Representation Learning has evolved into a multi-purpose tool capable of solving arbitrary problems provided enough data. This thesis focuses on two primary directions: (1) Harnessing the power of deep learning for applications in fundamental physics and (2) using physicsinspired tools to improve and shed some light on otherwise large-scale, inscrutable black-box algorithms. We explore a collection of applications that improve different aspects of nuclear and particle physics research across its many stages, from online data selection to offline data analysis. We also tease out how deep learning can open up entirely new avenues of research through the lens of mechanistic interpretability to (re)derive fundamental theory as well as new ways to reinterpret physics measurements. Lastly, we study how physics tools can be useful to better understand the dynamics of deep learning as well as provide a solid foundation for algorithms and training paradigms that expand the frontier of machine learning.
Date issued
2024-09
URI
https://hdl.handle.net/1721.1/157597
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.