MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Piezoelectric single crystal based one-dimensional phased array for breast tissue imaging

Author(s)
Du, Wenya
Thumbnail
DownloadThesis PDF (4.665Mb)
Advisor
Dagdeviren, Canan
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Ultrasound is widely used in clinical practice because it is safe, non-invasive, non-ionizing, low-cost, and provides real-time imaging, monitoring, and therapy. However, conventional ultrasound probes are rigid, pressure-required, and operator-dependent. Replacing rigid transducers with conformable ultrasound transducer arrays can allow image acquisition on curved body parts, improve image quality, and enable functions such as long-term monitoring. In this thesis, I propose a conformable ultrasound breast patch (cUSBr-Patch) consisting of a one-dimensional (1D) phased array and a nature-inspired patch design, which offers large-area, deep tissue scanning and multi-angle, repeatable breast imaging while avoiding the drawbacks of conventional ultrasound imaging technologies. I used a Yb/Bi-doped PIN-PMN-PT single crystal as the active element due to its superior piezoelectric properties (d33 = 2,800 pC/N, εr = 7,000, k33 = 0.93). I then fabricated a 1D phased array transducer consisting of 64 elements with an operational frequency of 7.0 MHz. The 1D array exhibits promising acoustic performance with i) a maximum imaging depth of 80 mm, ii) contrast sensitivity of 3 dB, iii) axial/lateral resolutions of 0.25/1.0 mm at 30 mm depth, and iv) a larger field of view than the commercial handheld linear probe at depths of approximately 30 mm or deeper, indicating a potential reliable capability to detect early-stage breast tumors. Beyond this, comprehensive in vitro experimental studies establish that the cUSBr-Patch can provide accurate and reproducible imaging of different phantoms. The clinical trials reveal that the patch exhibits a sufficient contrast resolution (~3 dB) and axial/lateral resolutions of 0.25/1.0 mm at 30 mm depth, allowing the observation of small cysts (~ 0.3 cm) in the breast. This research develops a first-of-its-kind ultrasound technology for breast tissue scanning and imaging which offers a non-invasive method for tracking real-time dynamic changes of soft tissue.
Date issued
2024-09
URI
https://hdl.handle.net/1721.1/157727
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.