MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Limits to extreme event forecasting in chaotic systems

Author(s)
Yuan, Yuan
Thumbnail
DownloadThesis PDF (1.314Mb)
Advisor
Lozano-Durán, Adrián
Terms of use
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Predicting extreme events in chaotic systems, characterized by rare but intensely fluctuating properties, is of great importance due to their impact on the performance and reliability of a wide range of systems. Some examples include weather forecasting, traffic management, power grid operations, and financial market analysis, to name a few. Methods of increasing sophistication have been developed to forecast events in these systems. However, the boundaries that define the maximum accuracy of forecasting tools are still largely unexplored from a theoretical standpoint. Here, we address the question: What is the minimum possible error in the prediction of extreme events in complex, chaotic systems? We derive the minimum probability of error in extreme event forecasting along with its information-theoretic lower and upper bounds. These bounds are universal for a given problem, in that they hold regardless of the modeling approach for extreme event prediction: from traditional linear regressions to sophisticated neural network models. The limits in predictability are obtained from the cost-sensitive Fano’s and Hellman’s inequalities using the Rényi entropy. The results are also connected to Takens’ embedding theorem using the information can’t hurt inequality. Finally, the probability of error for a forecasting model is decomposed into three sources: uncertainty in the initial conditions, hidden variables, and suboptimal modeling assumptions. The latter allows us to assess whether prediction models are operating near their maximum theoretical performance or if further improvements are possible. The bounds are applied to the prediction of extreme events in the Rössler system and the Kolmogorov flow.
Date issued
2024-09
URI
https://hdl.handle.net/1721.1/157825
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.