MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Double trouble: Predicting new variant counts across two heterogeneous populations

Author(s)
Shen, Yunyi
Thumbnail
DownloadThesis PDF (6.166Mb)
Advisor
Broderick, Tamara
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Collecting genomics data across multiple heterogeneous populations (e.g., across different cancer types) has the potential to improve our understanding of disease. Despite sequencing advances, though, resources often remain a constraint when gathering data. So it would be useful for experimental design if experimenters with access to a pilot study could predict the number of new variants they might expect to find in a follow-up study: both the number of new variants shared between the populations and the total across the populations. While many authors have developed prediction methods for the single-population case, we show that these predictions can fare poorly across multiple populations that are heterogeneous. We prove that, surprisingly, a natural extension of a state-of-the-art single-population predictor to multiple populations fails for fundamental reasons. We provide the first predictor for the number of new shared variants and new total variants that can handle heterogeneity in multiple populations. We show that our proposed method works well empirically using real cancer and population genetics data.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/158206
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.