MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applying Statistical Analysis and Machine Learning to Improve the Ice Sensing Algorithm

Author(s)
Herron, Lucas A.
Thumbnail
DownloadThesis PDF (1.922Mb)
Advisor
Jayne, Steven R.
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
The detection of sea ice is a major problem faced by Argo floats operating in polar regions. In these areas, the presence of sea ice threatens to damage or destroy floats in the event of an impact at the surface. While methods have been proposed and implemented to combat this danger, the most successful of which is the Ice Sensing Algorithm (ISA), further work is necessary to fully mitigate the risks, particularly in the Arctic. In this analysis, past CTD profiles from the Arctic are compiled and matched with sea ice data to examine the performance of the ISA and recommend potential changes and new methods to further improve its accuracy. This is accomplished by fitting the data to statistical and machine learning models to predict the presence of ice and analyzing the results. Results show that both modifications to current methods and the inclusion of new variables may increase the predictive power of the ISA. Specifically, the analysis shows that the use of point measurements (as opposed to a metric over a pressure range) at the shallowest allowable depth provides the best performance. The additional inclusion of practical salinity and time of year as predictive variables also increases the performance of the algorithm. Results and statistics on the performance of the algorithm are provided and analyzed in various regions.
Date issued
2023-09
URI
https://hdl.handle.net/1721.1/158268
Department
Joint Program in Physical Oceanography; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.