MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiscale design of bioadhesive platforms for next-generation applications in surgery and healthcare

Author(s)
Wu, Sarah J.
Thumbnail
DownloadThesis PDF (36.62Mb)
Advisor
Zhao, Xuanhe
Terms of use
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-sa/4.0/
Metadata
Show full item record
Abstract
Bioadhesives—materials capable of adhering to biological tissues—hold significant promise as transformative tools in healthcare, offering the ability to repair tissues with ease and minimal damage. These materials present numerous opportunities in surgery and human-machine interfaces, creating a broad landscape of applications that has captivated clinical and scientific interest alike. Still, there remain open challenges surrounding their reliability, biocompatibility, usability, and versatility. These include weak adhesion with wet tissues, foreign body response, cumbersome application processes, and limited customizability. This dissertation presents a multiscale framework for addressing these obstacles, encompassing design strategies on the molecular, polymer network architecture, macroscale device, and application process levels. The implementation of this framework is demonstrated through the development of two pioneering bioadhesive platforms: (1) a multifunctional patch for minimally invasive surgery, and (2) a 3D printable bioadhesive for fabricating tunable, application-specific devices. Together, these platforms expand the design space for creating robust and versatile tissue repair solutions and biomedical devices.
Date issued
2024-09
URI
https://hdl.handle.net/1721.1/158323
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.