MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Burst Imaging with Learned Continuous Kernels

Author(s)
Biscarrat, Camille
Thumbnail
DownloadThesis PDF (19.47Mb)
Advisor
Durand, Frédo
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Burst imaging is a technique that consists of taking multiple images in quick succession and merging them into one output image. By aligning and combining data from multiple frames, we can increase resolution, attenuate noise, reduce motion blur and expand the dynamic range to obtain a higher quality image. In this thesis, we propose a method that learns continuous kernels to process and merge burst frames. We show that the learned kernels adapt to local image information and take advantage of sub-pixel sample location information to demosaic, denoise and merge the burst into a high quality output.
Date issued
2024-09
URI
https://hdl.handle.net/1721.1/158488
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.