MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigating the Atmospheric and Oceanic Drivers of Atlantic Multidecadal Variability and Predictability

Author(s)
Liu, Glenn Yu-zu
Thumbnail
DownloadThesis PDF (82.10Mb)
Advisor
Kwon, Young-Oh
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Despite its numerous impacts across the Earth system, the relative importance of ocean and atmospheric dynamics in generating Atlantic Multidecadal Variability (AMV) remains an open question. This thesis presents three pathways to understanding how oceanic and atmospheric processes generate key spatio-temporal signatures of AMV through a combination of processed-based and data-driven approaches. Part 1 (Chapter 2) takes a "bottom up" approach, building a hierarchy of stochastic models to identify the contributions of vertical entrainment and seasonality in local upper-ocean processes to sea surface temperature (SST) variability. Through this hierarchy, I highlight unrealistic features present in slab ocean models widely used to isolate atmospheric contributions to AMV. On the opposite end of the spectrum, Part 2 (Chapter 3) utilizes a "top-down" data-driven approach where deep neural networks are trained to predict the North Atlantic SST Index in both the Community Earth System Model 1 Large Ensemble (CESM1) and observation-based datasets using atmospheric and oceanic predictors. I apply explainable artificial intelligence techniques to highlight a significant source of multidecadal predictability over the Transition Zone in oceanic predictors such as sea surface salinity (SSS) and sea surface height in the presence of external forcings. Part 3 (Chapter 4) returns to the process-based hierarchy, but applies this to understanding SSS variability. The stochastic salinity model is used to investigate the role of mixed-layer re-emergence, subsurface ocean damping and SST-evaporation feedback in shaping the pattern and amplitude of AMV.
Date issued
2025-02
URI
https://hdl.handle.net/1721.1/158897
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.