Encoder-Agnostic Learned Temporal Matching for Video Classification
Author(s)
Ho, Darryl
DownloadThesis PDF (1.670Mb)
Advisor
Madden, Samuel R.
Terms of use
Metadata
Show full item recordAbstract
In recent years, large transformer-based video encoder models have greatly advanced stateof-the-art performance on video classification tasks. However, these large models typically process videos by averaging embedding outputs from multiple clips over time to produce fixed-length representations. This approach fails to account for a variety of time-related features, such as variable video durations, chronological order of events, and temporal variance in feature significance. While methods for temporal modeling do exist, they often require significant architectural changes and expensive retraining, making them impractical for offthe-shelf, fine-tuned large encoders. To overcome these limitations, we propose DejaVid, an encoder-agnostic method that enhances model performance without the need for retraining or altering the architecture. Our framework converts a video into a variable-length temporal sequence of embeddings, which we call a multivariate time series (MTS). An MTS naturally preserves temporal order and accommodates variable video durations. We then learn pertimestep, per-feature weights over the encoded MTS frames, allowing us to account for variations in feature importance over time. We introduce a new neural network architecture inspired by traditional time series alignment algorithms for this learning task. Our evaluation demonstrates that DejaVid substantially improves the performance of a state-of-the-art large encoder, achieving leading Top-1 accuracy of 77.2% on Something-Something V2, 89.1% on Kinetics-400, and 88.6% on HMDB51, while adding fewer than 1.8% additional learnable parameters and requiring less than 3 hours of training time.
Date issued
2025-02Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology