MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Near-Optimal Learning and Planning in Separated Latent MDPs

Author(s)
Chen, Fan
Thumbnail
DownloadThesis PDF (987.5Kb)
Advisor
Daskalakis, Constantinos
Rakhlin, Alexander
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
We study computational and statistical aspects of learning Latent Markov Decision Processes (LMDPs). In this model, the learner interacts with an MDP drawn at the beginning of each epoch from an unknown mixture of MDPs. To sidestep known impossibility results, we consider several notions of δ-separation of the constituent MDPs. The main thrust of this paper is in establishing a nearly-sharp statistical threshold for the horizon length necessary for efficient learning. On the computational side, we show that under a weaker assumption of separability under the optimal policy, there is a quasi-polynomial algorithm with time complexity scaling in terms of the statistical threshold. We further show a near-matching time complexity lower bound under the exponential time hypothesis.
Date issued
2025-02
URI
https://hdl.handle.net/1721.1/158934
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.