MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Weak Shock Waves on a Chip: Generation and Applications

Author(s)
Deschamps, Jude
Thumbnail
DownloadThesis PDF (9.698Mb)
Advisor
Nelson, Keith A.
Terms of use
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In conventional laser-shock experiments in solid media, shock waves are typically excited from the ablation of a photoacoustic transducer layer deposited onto the sample of interest. Unavoidably, the target materials are damaged. This leads to the necessity of changing targets after each exposure, likely lowering the shot-to-shot reproducibility and data quality, while lowering the throughput of the experiment. Motivated by the need to generate large-amplitude transient strain waves at a high repetition rate, this thesis introduces a novel platform for the non-destructive generation and amplification of acoustic waves with associated strain levels in the percent range — up to the formation of shock waves. The acoustic amplification scheme is first described. Then, owing to the capabilities of the technique to repeatedly load a material with finite-amplitude strain waves, a demonstration of the use of the platform for microscale fatigue testing is made. Finally, the strain localization of surface acoustic waves is leveraged by transiently modulating a monolayer of a transition metal dichalcogenide deposited on a substrate.
Date issued
2025-02
URI
https://hdl.handle.net/1721.1/158942
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.