MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

All Pass Readout With Ring Resonators for Qubit Measurement

Author(s)
Zang, Alicia
Thumbnail
DownloadThesis PDF (1.403Mb)
Advisor
O’Brien, Kevin P.
Terms of use
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Quantum computers may advance computing by solving some NP complexity problems, such as factoring and simulating quantum systems. Superconducting qubits, configurable artificial atoms comprised of circuit elements, are a leading platform to create quantum computers. Many schemes for superconducting qubit readout include a weakly coupled port as a capacitor in the feedline, which allows for directionality in the readout signal. However, this impedance mismatch creates problems with resonator linewidth variation, standing waves, and voltage nodes in the feedline, leading to challenges in scaling to larger frequency multiplexed systems. This thesis proposes an all-pass readout scheme that utilizes ring resonators that do not require a weakly coupled port, allowing for more modular qubit readout architectures.
Date issued
2025-02
URI
https://hdl.handle.net/1721.1/159080
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.