MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convergence of the Arnoldi Iteration for Estimating Extreme Eigenvalues

Author(s)
Chen, Cecilia
Thumbnail
DownloadThesis PDF (622.2Kb)
Advisor
Urschel, John
Terms of use
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Krylov subspace methods, like the Arnoldi iteration, are a powerful tool for efficiently solving high-dimensional linear algebra problems. In this work, we analyze the convergence of Krylov methods for estimating the numerical range of a matrix. Prior bounds on approximation error often depend on eigenvalue gaps of the matrix, which lead to weaker bounds than observed in practice, specifically in applications where these gaps are small. Instead, we extend a line of work proving gap-independent bounds for the Lanczos method, which depend only on the matrix dimensions and number of iterations, to the more general Arnoldi case.
Date issued
2025-02
URI
https://hdl.handle.net/1721.1/159091
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.