Show simple item record

dc.contributor.authorTarkhan, Nada
dc.contributor.authorCrawley, Drury B
dc.contributor.authorLawrie, Linda K
dc.contributor.authorReinhart, Christoph
dc.date.accessioned2025-06-03T19:17:00Z
dc.date.available2025-06-03T19:17:00Z
dc.date.issued2025-05-06
dc.identifier.urihttps://hdl.handle.net/1721.1/159341
dc.description.abstractTypical Meteorological Years (TMYs) have long supported the building sector by integrating local climate into building design for energy, thermal comfort, and peak load assessments. As climates shift, past heat waves and cold spells signal future conditions requiring greater adaptability. This study proposes a new file generation method that preserves TMY properties while embedding extreme events. We combine three anomaly-detection methods—temperature thresholds, Graph Neural Networks (GNNs), and Extreme Value Theory (EVT)—to capture climatic deviations, detect anomalies, and model statistical extremes. An integrated hierarchical method forms the new Representative Meteorological Year (RMY) file. RMY files for six ASHRAE climate-zones consistently capture past extremes, producing worst-case scenarios for key metrics, including peak loads, indoor thermal stress, natural ventilation and outdoor comfort. The largest deviation between the TMY and RMY was a doubling of indoor thermal stress hours across all climates, while average energy use remained aligned, with a deviation of 6%.en_US
dc.language.isoen
dc.publisherInforma UK Limiteden_US
dc.relation.isversionof10.1080/19401493.2025.2499687en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivativesen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceInforma UK Limiteden_US
dc.titleGeneration of representative meteorological years through anomaly-based detection of extreme eventsen_US
dc.typeArticleen_US
dc.identifier.citationTarkhan, N., Crawley, D. B., Lawrie, L. K., & Reinhart, C. (2025). Generation of representative meteorological years through anomaly-based detection of extreme events. Journal of Building Performance Simulation, 1–18.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Building Technology Programen_US
dc.relation.journalJournal of Building Performance Simulationen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-06-03T19:07:46Z
dspace.orderedauthorsTarkhan, N; Crawley, DB; Lawrie, LK; Reinhart, Cen_US
dspace.date.submission2025-06-03T19:07:48Z
mit.journal.volumeJournal of Building Performance Simulationen_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record