MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Traversing Rugged Domains: Explorations in Non-convex Optimization Theory and Software

Author(s)
Dixit, Vaibhav Kumar
Thumbnail
DownloadThesis PDF (1.306Mb)
Advisor
Edelman, Alan
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
This thesis introduces theoretical and computational frameworks for nonlinear, nonconvex optimization problems in statistics, machine learning, and optimal control. Disciplined Geodesically Convex Programming (DGCP) extends convexity verification to Riemannian manifolds, enabling optimization on curved spaces with global optimality guarantees. We develop rules and atoms for Cartan-Hadamard manifolds, particularly symmetric positive definite matrices, transforming non-convex problems into tractable ones through Riemannian geometry. We also present Optimization.jl, a unified interface for diverse optimization methods that supports specialized implementations for specific problem classes. Its modular architecture integrates automatic differentiation with an extensible plugin system. The framework’s capabilities are demonstrated through a GPU-accelerated hybrid method combining Particle Swarm Optimization with L-BFGS, and an augmented Lagrangian approach with stochastic inner optimizers that connects constrained optimization with machine learning techniques. Our work combines theoretical foundations with practical implementation, providing researchers tools to use advanced optimization methods without specialized mathematical knowledge.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/159895
Department
Massachusetts Institute of Technology. Center for Computational Science and Engineering
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.