MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Large-Scale Optimization using Reinforcement Learning, Dynamic Programming, and Column Generation

Author(s)
Paskov, Alexander Spassimirov
Thumbnail
DownloadThesis PDF (8.773Mb)
Advisor
Bertsimas, Dimitris
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
One of the most enduring challenges in large-scale optimization is determining how to push the boundaries of scalability without compromising on performance or rigor. For decades, the exponential advances in computational power offered a straightforward solution: bigger problems could simply be tackled by bigger machines. However, in recent years, it has become increasingly apparent that pure computational force alone can no longer keep pace with the ever-growing complexity and scale of real-world applications. Additionally, despite the remarkable success of general-purpose methods for linear and integer optimization, these methods often struggle when confronted with domains that involve intricate dynamics, massive dimensionality, or a need for fine-grained sequential decisions. The simple question thus arises: can we design new optimization methods that scale more appropriately? In this thesis, we propose using dynamic programming, reinforcement learning, and column generation as a practical way to address this need across a variety of settings. We begin by developing and refining our methodology within the context of reinforcement learning and dynamic programming. We then move on to the application of column generation, and finally show how these techniques can be combined to supercharge fundamental machine learning methods with large-scale optimality.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/162148
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.