MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Explanation Alignment: Quantifying the Correctness of Model Reasoning At Scale

Author(s)
Bang, Hyemin
Thumbnail
DownloadThesis PDF (1.642Mb)
Advisor
Satyanarayan, Arvind
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
To improve the reliability of machine learning models, researchers have developed metrics to measure the alignment between model saliency and human explanations. Thus far, however, these saliency-based alignment metrics have been used to conduct descriptive analyses and instance-level evaluations of models and saliency methods. To enable evaluative and comparative assessments of model alignment, we extend these metrics to compute explanation alignment — the aggregate agreement between model and human explanations. To compute explanation alignment, we aggregate saliency-based alignment metrics over many model decisions and report the result as a performance metric that quantifies how often model decisions are made for the right reasons. Through experiments on nearly 200 image classification models, multiple saliency methods, and MNIST, CelebA, and ImageNet tasks, we find that explanation alignment automatically identifies spurious correlations, such as model bias, and uncovers behavioral differences between nearly identical models. Further, we characterize the relationship between explanation alignment and model performance, evaluating the factors that impact explanation alignment and how to interpret its results in-practice.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/162502
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.