Show simple item record

dc.contributor.advisorJegelka, Stefanie
dc.contributor.authorGoel, Abhinav
dc.date.accessioned2025-09-18T14:27:54Z
dc.date.available2025-09-18T14:27:54Z
dc.date.issued2025-05
dc.date.submitted2025-06-23T14:02:02.214Z
dc.identifier.urihttps://hdl.handle.net/1721.1/162698
dc.description.abstractThe inclusion of symmetries as an inductive bias, known as “equivariance”, often improves generalization on geometric data (e.g. grids, sets, and graphs). However, equivariant architectures are usually highly constrained, designed for pre-chosen symmetries, and cannot be applied to datasets with different symmetries. This work constructs a single model that is simultaneously equivariant to several groups, by simply regulating a certain input feature. Starting with a permutation-equivariant base model respecting the full Sₙ symmetry group, we can obtain subgroup G ⊆ Sₙ equivariance by using a symmetry-breaking input that is G-symmetric. Under mild conditions, the resultant network is only G-equivariant. But finding an input with automorphism group exactly G is computationally hard, which can be overcome by relaxing exact symmetry breaking to approximate symmetry breaking. This is done by leveraging the notion of 2-closure to derive fast algorithms. This method is validated on symmetry selection, multitask, and transfer learning settings, demonstrating that a single network equivariant to multiple permutation subgroups outperforms both separate equivariant models or a single non-equivariant model.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright retained by author(s)
dc.rights.urihttps://rightsstatements.org/page/InC-EDU/1.0/
dc.titleSingle-Model Any-Subgroup Equivariance via SymmetricPositional Encodings
dc.typeThesis
dc.description.degreeM.Eng.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeMaster
thesis.degree.nameMaster of Engineering in Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record