MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Pedagogical Multimodal System for Mathematical Problem-Solving and Visual Reasoning

Author(s)
Lee, Jimin
Thumbnail
DownloadThesis PDF (3.074Mb)
Advisor
Liang, Paul Pu
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Effective reasoning often requires more than text or language. It requires visualizing, drawing, gesturing, and interacting for both humans and artificial intelligence (AI). Specifically in educational subjects, such as geometry and graphs, visual tools like auxiliary annotations and drawings can greatly help students understand abstract theories. This thesis explores and suggests how multimodal interaction between humans and AI helps humans engage with the system more naturally and effectively, leading to improved problem-solving in mathematical settings. Recent large multimodal models (LMMs) have the ability to facilitate collaborative reasoning by supporting textual, visual, and interactive inputs, diversifying methods of communication between humans and AI. Utilizing such advancements, this thesis also dives into the development of Interactive Sketchpad, a tutoring system that combines language-based explanations with interactive visualizations to enhance learning. It also reviews findings from user studies with Interactive Sketchpad, demonstrating that multimodality contributes to user task comprehension and engagement levels. Together, these contributions can reframe the role of AI in education as a visual and interactive collaborator that supports deeper reasoning rather than simply providing answers. Furthermore, this work demonstrates the potential of multimodal human-AI systems in fostering engagement and scaling personalized, visual learning across domains.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/162736
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.