MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning for Space Object Density Distribution Prediction

Author(s)
Sarangerel, Sumiyajav
Thumbnail
DownloadThesis PDF (9.506Mb)
Advisor
Linares, Richard
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
The rapid growth of artificial objects in Low Earth Orbit (LEO) has heightened concerns over orbital congestion and collision cascades, known as Kessler Syndrome. Traditional high-fidelity models, while accurate, are computationally intensive and poorly scalable. This thesis introduces a machine learning–based framework for forecasting the long-term evolution of space object density. A large dataset is generated, using the MIT Orbital Capacity Assessment Tool – Monte Carlo (MOCAT-MC), simulating thousands of scenarios across varying launch, disposal, and maneuver parameters. A Convolutional Gated Recurrent Unit (ConvGRU) is trained to predict density distributions over a 100-year horizon, achieving accurate forecasts with significantly reduced runtime. With a simple guidance mechanism, the generalization capability of the model across diverse scenarios is greatly improved. This approach offers a scalable and efficient tool for supporting future space traffic management and sustainability efforts.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/162910
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.