MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Eliminating Hallucination-Induced Errors in Code Generation with Functional Clustering

Author(s)
Ravuri, Chaitanya
Thumbnail
DownloadThesis PDF (2.129Mb)
Advisor
Amarasinghe, Saman
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Modern code–generation LLMs can already solve a large fraction of programming problems, yet they still hallucinate subtle bugs that make their outputs unsafe for autonomous deployment. We present functional clustering, a black-box wrapper that eliminates nearly all hallucination-induced errors while providing a tunable confidence score. The wrapper samples many candidate programs, executes each on a self-generated test suite, and clusters candidates whose I/O behavior is identical; the empirical mass of the largest cluster serves as an exact confidence estimate. A single scalar threshold on this estimate lets users trade coverage for reliability with exponential guarantees. On LiveCodeBench our verifier preserves baseline pass@1 on solvable tasks yet slashes the error rate of returned answers from ∼65% to 2%, and drives it to 0% at a conservative threshold while still answering 15.6% of prompts. Manual audits show that the few residual mistakes stem from prompt misinterpretation, not random generation noise, narrowing future work to specification clarity. Because the method requires only sampling and sandbox execution, it applies unchanged to closed-source APIs and future models, offering a practical path toward dependable, autonomous code generation.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/162941
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.