MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mitigating LLM Hallucination in the Banking Domain

Author(s)
Sert, Deniz Bilge
Thumbnail
DownloadThesis PDF (413.4Kb)
Advisor
Gupta, Amar
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Large Language Models (LLMs) offer significant potential in the banking sector, particularly for applications such as fraud detection, credit approval, and enhancing customer experience. However, their tendency to "hallucinate"—generating plausible but inaccurate information—poses a critical challenge. This thesis examines existing strategies for mitigating LLM hallucinations and proposes a novel approach to reduce hallucinations in the context of predicting customer churn using LLMs.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/162944
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.