MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transforming Unstructured Data into Actionable Insights: A Use Case of Generative AI in Operational Technology Problem Management

Author(s)
Gallardo Moncayo, Gabriel A.
Thumbnail
DownloadThesis PDF (11.47Mb)
Advisor
Ramakrishnan, Rama
Daniel, Luca
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
The increasing availability and reduced cost of Generative AI applications for the general public have motivated organizations across all industries to implement AI-based solutions in their daily operations. Still, they struggle to determine the capabilities and limitations of this technology when implementing it in their specific context. This thesis addresses these challenges through a practical case study: deploying a text-based Generative AI system (using Large Language Models - LLMs) for automated downtime event characterization within a global industrial operational technology (OT) setting by transforming unstructured problem management reports into structured, actionable business insights. The developed software system contains a data pre-processing stage, followed by four LLM-based tasks (LLM-extraction, LLM-autoclassification, multi-aspect multi-level LLM-classification, and LLM-accuracy). We wrap everything in a well-structured and easy-to-understand evaluation framework that ensures the system’s output is format-reliable, accurate, and consistent. Through simple prompt engineering techniques and continuous failure modes analysis, we achieve high accuracy (>89%) and consistency (>79%) for downtime events characterization at 1% of the current cost. In the end, we prove that it is possible to implement an AI-based solution within current operational processes while properly communicating its capabilities and limitations and adapting its usage to the most added value purpose.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/163288
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Sloan School of Management
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.