MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Data-Driven Work Center Assignment and Pricing Strategy for a Job Shop

Author(s)
Carson, Alix
Thumbnail
DownloadThesis PDF (2.196Mb)
Advisor
Hardt, David
Willems, Sean
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Job shops with semi-autonomous work centers must understand their capacity utilization and financial state to maximize efficiency and profitability. Machine monitoring software allows managers to see the state of machines at any time and capture real-time capacity utilization. Job shops are positioned to maximize these work centers and must connect their manufacturing and operations strategy to the real-time shop data to maximize efficiency. This research is a case study in how a job shop can create a right-to-win strategy targeting jobs that are compatible and profitable for semiautonomous machines. ADDMAN Precision Baltimore (APBAL), a precision machine shop in the aerospace and defense industry, is facing labor constraints and underutilized work centers. This research aims to develop a structured quoting strategy and strategic pricing model to optimize job allocation between APBAL’s two semi-autonomous machining centers: the Makino Machining Complex 2 (MMC) and the Fanuc Robodrill. By integrating qualitative observations, historical job data, and machine utilization metrics, this study identifies inefficiencies in current job assignment practices. Key findings indicate that aligning work center assignments with projected profitability and capacity utilization can improve overall efficiency. A decision-making framework and pricing matrix are proposed to enhance job quoting accuracy, optimize machine usage, and increase APBAL’s competitiveness in securing high-volume contracts. The results offer a scalable framework for APBAL and its parent company, ADDMAN Engineering, to deploy across other machining facilities, ultimately improving operational performance and financial outcomes.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/163312
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Sloan School of Management
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.