## Statistics on pattern-avoiding permutations

##### Author(s)

Elizalde, Sergi, 1979-
DownloadFull printable version (684.2Kb)

##### Other Contributors

Massachusetts Institute of Technology. Dept. of Mathematics.

##### Advisor

Richard P. Stanley.

##### Terms of use

##### Metadata

Show full item record##### Abstract

This thesis concerns the enumeration of pattern-avoiding permutations with respect to certain statistics. Our first result is that the joint distribution of the pair of statistics 'number of fixed points' and 'number of excedances' is the same in 321-avoiding as in 132-avoiding permutations. This generalizes a recent result of Robertson, Saracino and Zeilberger, for which we also give another, more direct proof. The key ideas are to introduce a new class of statistics on Dyck paths, based on what we call a tunnel, and to use a new technique involving diagonals of non-rational generating functions. Next we present a new statistic-preserving family of bijections from the set of Dyck paths to itself. They map statistics that appear in the study of pattern-avoiding permutations into classical statistics on Dyck paths, whose distribution is easy to obtain. In particular, this gives a simple bijective proof of the equidistribution of fixed points in the above two sets of restricted permutations. (cont.) Then we introduce a bijection between 321- and 132-avoiding permutations that preserves the number of fixed points and the number of excedances. A part of our bijection is based on the Robinson-Schensted-Knuth correspondence. We also show that our bijection preserves additional parameters. Next, motivated by these results, we study the distribution of fixed points and excedances in permutations avoiding subsets of patterns of length 3. We solve all the cases of simultaneous avoidance of more than one pattern, giving generating functions which enumerate them. Some cases are generalized to patterns of arbitrary length. For avoidance of one single pattern we give partial results. We also describe the distribution of these statistics in involutions avoiding any subset of patterns of length 3. The main technique consists in using bijections between pattern-avoiding permutations and certain kinds of Dyck paths, in such a way that the statistics in permutations that we consider correspond to statistics on Dyck paths which are easier to enumerate. Finally, we study another kind of restricted permutations, counted by the Motzkin numbers. By constructing a bijection into Motzkin paths, we enumerate them with respect to some parameters, including the length of the longest increasing and decreasing subsequences and the number of ascents.

##### Description

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2004. Includes bibliographical references (p. 111-116). This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.

##### Date issued

2004##### Department

Massachusetts Institute of Technology. Department of Mathematics##### Publisher

Massachusetts Institute of Technology

##### Keywords

Mathematics.