MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Giant vesicles compressed by actin polymerization

Author(s)
Carrel, Hyman A. (Hyman Andrew), 1979-
Thumbnail
DownloadFull printable version (11.76Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Alexander van Oudenaarden.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Actin polymerization plays a critical role in generating propulsive force to drive many types of cell motility. The discovery of actin based motility of the bacterial pathogen Listeria monocytogenes has lead to clearer understandings of the essential ingredients required for cell motility. The biophysical mechanisms by which these proteins generate forces is the subject of intense investigation. A novel system to study force generation by this polymerization engine is introduced by combining the well characterized mechanical properties of synthetic Giant Vesicles with the well understood biochemistry of actin polymerization. Giant Vesicles mimic the structural features of eukaryotic cell membranes. We find that Giant Vesicles coated with a protein that catalyzes actin polymerization form thick actin shells which produce a compressive force. The polymerization force directed at the membrane interface causes the membrane to rupture. In the resulting collapse we find that the shell thickens inward with a constant radial velocity and is characterized by radial lines of lipid and actin. We show that actin polymerization is the primary force driving the collapse.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Physics, 2004.
 
Includes bibliographical references (p. 45-46).
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/16646
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.