MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Selfish versus coordinated routing in network games

Author(s)
Stier Moses, Nicolás E
Thumbnail
DownloadFull printable version (1.625Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Andreas S. Schulz.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A common assumption in network optimization models is that a central authority controls the whole system. However, in some applications there are independent users, and assuming that they will follow directions given by an authority is not realistic. Individuals will only accept directives if they are in their own interest or if there are incentives that encourage them to do so. Actually, it would be much easier to let users make their own decisions hoping that the outcome will be close to the authority's goals. Our main contribution is to show that, in static networks subject to congestion, users' selfish decisions drive the system close to optimality with respect to various common objectives. This connection to individual decision making proves fruitful; not only does it provide us with insights and additional understanding of network problems, but it also allows us to design approximation algorithms for computationally difficult problems. More specifically, the conflicting objectives of the users prompt the definition of a network game in which they minimize their own latencies. We show that the so-called price of anarchy is small in a quite general setting. Namely, for networks with side constraints and non-convex, non-differentiable, and even discontinuous latency functions, we show that although an arbitrary equilibrium need not be efficient, the total latency of the best equilibrium is close to that of an optimal solution. In addition, when the measure of the solution quality is the maximum latency, equilibria in networks without constraints are also near-optimal. We provide the first analysis of the problem of minimizing that objective in static networks with congestion.
 
(cont.) As this problem is NP-hard, computing an equilibrium represents a constant-factor approximation algorithm. In some situations, the network authority might still want to do better than in equilibrium. We propose to use a solution that minimizes the total latency, subject to constraints designed to improve the solution's fairness. For several real-world instances, we compute traffic assignments of notably smaller total latency than an equilibrium, yet of similar fairness. Furthermore, we provide theoretical results that explain the conclusions derived from the computational study.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2004.
 
Includes bibliographical references (p. 159-170) and index.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/16650
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.