MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Edge labellings of partially ordered sets

Author(s)
McNamara, Peter, 1978-
Thumbnail
DownloadFull printable version (857.4Kb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Richard P. Stanley.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
It is well known that if a finite graded lattice of rank n is supersolvable, then it has an EL-labelling where the labels along any maximal chain form a permutation of [1, 2,..., n]. We call such a labelling an Sn EL-labelling and we show that a finite graded lattice of rank n is supersolvable if and only if it has such a labelling. This result can be used to show that a graded lattice is supersolvable if and only if it has a maximal chain of left modular elements. We next study finite graded bounded posets that have Sn EL-labellings and describe a type A 0-Hecke algebra action on their maximal chains. This action is local and the resulting representation of these Hecke algebras is closely related to the flag h-vector. We show that finite graded lattices of rank n, in particular, have such an action if and only if they have an Sn EL-labelling. Our next goal is to extend these equivalences to lattices that need not be graded and, furthermore, to bounded posets that need not be lattices. In joint work with Hugh Thomas, we define left modularity in this setting, as well as a natural extension of Sn EL-labellings, known as interpolating labellings. We also suitably extend the definition of lattice supersolvability to arbitrary bounded graded posets. We show that these extended definitions preserve the appropriate equivalences. Finally, we move to the study of P-partitions. Here, edges are labelled as either "strict" or "weak" depending on an underlying labelling of the elements of the poset. A well-known conjecture of R. Stanley states that the quasisymmetric generating function for P-partitions is symmetric if and only if P is isomorphic to a Schur labelled skew shape poset.
 
(cont.) In characterizing these skew shape posets in terms of their local structure, C. Malvenuto made significant progress on this conjecture. We generalize the definition of P-partitions by letting the set of strict edges be arbitrary. Using cylindric diagrams, we extend Stanley's conjecture and Malvenuto's characterization to this setting. We conclude by proving both conjectures for large classes of posets.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2003.
 
Includes bibliographical references (p. 81-84) and index.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Date issued
2003
URI
http://hdl.handle.net/1721.1/16919
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.