Show simple item record

dc.contributor.advisorHae-Seung Lee and Mark B. Ketchen.en_US
dc.contributor.authorBulzacchelli, John F. (John Francis)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2005-05-19T15:24:22Z
dc.date.available2005-05-19T15:24:22Z
dc.date.copyright2003en_US
dc.date.issued2003en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/16949
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.en_US
dc.descriptionIncludes bibliographical references (p. 291-305).en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.description.abstractDirect analog-to-digital conversion of multi-GHz radio frequency (RF) signals is the ultimate goal in software radio receiver design but remains a daunting challenge for any technology. This thesis examines the potential of superconducting technology for realizing RF analog-to-digital converters (ADCs) with improved performance. A bandpass delta-sigma (AE) modulator is an attractive architecture for digitizing narrowband signals with high linearity and a large signal-to-noise ratio (SNR). The design of a superconducting bandpass AE modulator presented here exploits several advantages of superconducting electronics: the high quality factor of resonators, the high sampling rates of comparators realized with Josephson junctions, natural quantization of voltage pulses, and high circuit sensitivity. Demonstration of a superconducting circuit operating at clock rates in the tens of GHz is often hindered by the difficulty of high speed interfacing with room-temperature test equipment. In this work, a test chip with integrated acquisition memory is used to simplify high speed testing in a cryogenic environment. The small size (256 bits) of the on-chip memory severely limits the frequency resolution of spectra based on standard fast Fourier transforms. Higher resolution spectra are obtained by "segmented correlation", a new method for testing ADCs. Two different techniques have been found for clocking the superconducting modulator at frequencies in the tens of GHz. In the first approach, an optical clocking technique was developed, in which picosecond laser pulses are delivered via optical fiber to an on-chip metal-semiconductor-metal (MSM) photodiode, whose output current pulses trigger the Josephson circuitry. In the second approach, the superconducting modulator is clocked by an on-chip Josephson oscillator.en_US
dc.description.abstract(cont.) These testing methods have been applied in the successful demonstration of a super-conducting bandpass AE modulator fabricated in a niobium integrated circuit process with 1 kA/cm2 critical current density for the Josephson junctions. At a 42.6 GHz sampling rate, the center frequency of the experimental modulator is 2.23 GHz, the measured SNR is 49 dB over a 20.8 MHz bandwidth, and a full-scale (FS) input is -17.4 dBm. At a 40.2 GHz sampling rate, the measured in-band noise is -57 dBFS over a 19.6 MHz bandwidth.en_US
dc.description.statementofresponsibilityby John Francis Bulzacchelli.en_US
dc.format.extent305 p.en_US
dc.format.extent3483085 bytes
dc.format.extent3482840 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleA superconducting bandpass delta-sigma modulator for direct analog-to-digital conversion of microwave radioen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc53278680en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record