MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Media Arts and Sciences
  • Media Arts and Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Media Arts and Sciences
  • Media Arts and Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A parallel environment for simulating quantum computation

Author(s)
Patz, Geva, 1973-
Thumbnail
DownloadFull printable version (663.2Kb)
Alternative title
parallel environment for the simulation of quantum computation
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture. Program in Media Arts and Sciences.
Advisor
Stephen A. Benton.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis describes the design and implementation of an environment to allow quantum computation to be simulated on classical computers. Although it is believed that quantum computers cannot in general be efficiently simulated classically, it is nevertheless possible to simulate small but interesting systems, on the order of a few tens of quantum bits. Since the state of the art of physical implementations is less than 10 bits, simulation remains a useful tool for understanding the behavior of quantum algorithms. To create a suitable environment for simulation, we constructed a 32-node cluster of workstation class computers linked with a high speed (gigabit Ethernet) network. We then wrote an initial simulation environment based on parallel linear algebra libraries with a Matlab front end. These libraries operated on large matrices representing the problem being simulated. The parallel Matlab environment demonstrated a degree of parallel speedup as we added processors, but overall execution times were high, since the amount of data scaled exponentially with the size of the problem. This increased both the number of operations that had to be performed to compute the simulation, and the volume of data that had to be communicated between the nodes as they were computing. The scaling also affected memory utilization, limiting us to a maximum problem size of 14 qubits. In an attempt to increase simulation efficiency, we revisited the design of the simulation environment. Many quantum algorithms have a structure that can be described using the tensor product operator from linear algebra. We believed that a new simulation environment based on this tensor product structure would be substantially more efficient than one based on large matrices. We designed a new simulation environment that exploited this tensor product structure. Benchmarks that we performed on the new simulation environment confirmed that it was substantially more efficient, allowing us to perform simulations of the quantum Fourier transform and the discrete approximation to the solution of 3-SAT by adiabatic evolution up to 25 qubits in a reasonable time.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2003.
 
Includes bibliographical references (p. 131-134).
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Date issued
2003
URI
http://hdl.handle.net/1721.1/16955
Department
Massachusetts Institute of Technology. Dept. of Architecture. Program in Media Arts and Sciences.
Publisher
Massachusetts Institute of Technology
Keywords
Architecture. Program in Media Arts and Sciences.

Collections
  • Media Arts and Sciences - Master's degree
  • Media Arts and Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.