MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reduced-basis output bound methods for parametrized partial differential equations

Author(s)
Rovas, Dimitrios V. (Dimitrios Vasileios), 1975-
Thumbnail
DownloadFull printable version (3.981Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Anthony T. Patera.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
An efficient and reliable method for the prediction of outputs of interest of partial differential equations with affine parameter dependence is presented. To achieve efficiency we employ the reduced-basis method: a weighted residual Galerkin-type method, where the solution is projected onto low-dimensional spaces with certain problem-specific approximation properties. Reliability is obtained by a posteriori error estimation methods - relaxations of the standard error-residual equation that provide inexpensive but sharp and rigorous bounds for the error in outputs of interest. Special affine parameter dependence of the differential operator is exploited to develop a two-stage off-line/on-line blackbox computational procedure. In the on-line stage, for every new parameter value, we calculate the output of interest and an associated error bound. The computational complexity of the on-line stage of the procedure scales only with the dimension of the reduced-basis space and the parametric complexity of the partial differential operator; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control. The theory and corroborating numerical results are presented for: symmetric coercive problems (e.g. problems in conduction heat transfer), parabolic problems (e.g. unsteady heat transfer), noncoercive problems (e.g. the reduced-wave, or Helmholtz, equation), the Stokes problem (e.g flow of highly viscous fluids), and certain nonlinear equations (e.g. eigenvalue problems).
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2003.
 
Includes bibliographical references (p. 189-200).
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Date issued
2003
URI
http://hdl.handle.net/1721.1/16956
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.