MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization techniques for task allocation and scheduling in distributed multi-agent operations

Author(s)
Tompkins, Mark F. (Mark Freeman), 1979-
Thumbnail
DownloadFull printable version (765.9Kb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
John J. Turkovich and Munther Dahleh.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis examines scenarios where multiple autonomous agents collaborate in order to accomplish a global objective. In the environment that we consider, there is a network of agents, each of which offers different sets of capabilities or services that can be used to perform various tasks. In this environment, an agent formulates a problem, divides it into a precedence-constrained set of sub-problems, and determines the optimal allocation of these sub-problems/tasks to other agents so that they are completed in the shortest amount of time. The resulting schedule is constrained by the execution delay of each service, job release times and precedence relations, as well as communication delays between agents. A Mixed Integer-Linear Programming (MILP) approach is presented in the context of a multi-agent problem-solving framework that enables optimal makespans to be computed for complex classifications of scheduling problems that take many different parameters into account. While the algorithm presented takes exponential time to solve and thus is only feasible to use for limited numbers of agents and jobs, it provides a flexible alternative to existing heuristics that model only limited sets of parameters, or settle for approximations of the optimal solution. Complexity results of the algorithm are studied for various scenarios and inputs, as well as recursive applications of the algorithm for hierarchical decompositions of large problems, and optimization of multiple objective functions using Multiple Objective Linear Programming (MOLP) techniques.
Description
Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.
 
Includes bibliographical references (p. 105-107).
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Date issued
2003
URI
http://hdl.handle.net/1721.1/16974
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.