A technical evaluation of a novel cell-surface cytokine detection technology
Author(s)
Peng, Eileen X. (Eileen Xiao Fei), 1980-
DownloadFull printable version (8.168Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Darrell J. Irvine.
Terms of use
Metadata
Show full item recordAbstract
Hall thrusters have become a tempting alternative to traditional chemical propulsion systems due to the great mass savings they provide through high specific impulses. However, a major stumbling block to their widespread integration is uncertainty about the thruster plume's interaction with spacecraft components. While in-space data is difficult to collect, much experimental data from vacuum tank tests is readily available. Effectively taking advantage of this wealth requires understanding of the effects from imperfect ground test conditions. A previous plume model, Qasi3, has been upgraded to better simulate the vacuum tank environment primarily through improvements to the source model, the collision method, and the sputtering method. The code is now more accurate and provides insight into phenomena such as background pressure consequences. sputtering and sputtered material deposition.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2003. Includes bibliographical references (leaves 65-67). This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Date issued
2003Department
Massachusetts Institute of Technology. Department of Materials Science and EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.