MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aerodynamic study of a small, ducted VTOL aerial vehicle

Author(s)
Dyer, Kyrilian G. (Kyrilian Gawan), 1977-
Thumbnail
DownloadFull printable version (7.981Mb)
Alternative title
Aerodynamic study of a small, ducted Vertical Takeoff and Landing aerial vehicle
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Sean George.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The Perching Unmanned Aerial Vehicle (PUAV) is a 9-inch diameter ducted vertical takeoff and landing reconnaissance vehicle with the capability of fast-forward cruise flight. Currently in the development stage, the program is envisaged to yield a man-portable craft that a foot soldier can use to provide over-the-hill observation. Several prototypes have been constructed and tested, with mixed results. Concerns regarding duct aerodynamics led to the proposal for further aerodynamic study to investigate effects of inlet lip radius and surface area, diffuser area ratio, blade tip clearance and rotor position on thrust, power and efficiency. This report covers the theory of rotorcraft and ducted propeller aerodynamics, and outlines the tests performed and results obtained. It also presents specifications of the test vehicle and methods that can be used in future ducted aircraft studies. Large angle diffusers tested showed reduced thrust and efficiency and increased power compared to smaller diffusers, contrary to theory. Reverse flow within the core appears to disrupt uniform exit flow and yields a conically divergent turbulent wake. Results of this study will be used in the redesign of a duct core fairing, which will act to control the airflow and reduce the tendency for reverse flow at the center where blade thrust is absent. Future studies will also consider twisted, cambered and tapered rotor blades in an effort to better address spanwise thrust distribution and optimized airflow. The test apparatus and methods developed for this report, in addition to results of initial testing, will be instrumental to further development of small ducted UAVs. Findings and methods are not limited to exact duplicates of PUAV-like aircraft, but can be used in a wide range of applications including lift and thrust-producing ducts.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.
 
Includes bibliographical references (p. 119-121).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/17539
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.