Show simple item record

dc.contributor.advisorStephen J. Lippard.en_US
dc.contributor.authorBurdette, Shawn C. (Shawn Christopher), 1975-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2005-06-02T16:12:49Z
dc.date.available2005-06-02T16:12:49Z
dc.date.copyright2002en_US
dc.date.issued2003en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/17567
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, February 2003.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractChapter 1. CoordinationChemistry for the Neurosciences Metal ions are integral components of numerous enzymes and proteins. Although the field of bioinorganic chemistry has not focused on the brain and central nervous system, metal ions are vital to many neurological functions and are implicated in several neurological disorders. In this chapter, I present a brief overview of the functions of metal ions in neurobiology and highlight recent advances in the use of fluorescent sensors to study the neurotransmitters zinc and nitric oxide. Chapter 2. Fluorescent Sensors for Zn2' Based on a Fluorescein Platform: Synthesis, Properties and Intracellular Distribution Two new fluorescent sensors for Zn2' that utilize fluorescein as a reporting group, Zinpyr-1 (ZP1) and Zinpyr-2 (ZP2), have been synthesized and characterized. ZP1 is prepared in one step via a Mannich reaction, and ZP2 is obtained in a multi-step synthesis that utilizes 4',5'-fluorescein dicarboxaldehyde as a key intermediate. Both ZP sensors have excitation and emission wavelengths in the visible range (500 nm), dissociation constants (Kdl) for Zn2* of less than 1 nM, quantum yields approaching unity ... and cell permeability, making them well suited for intracellular applications. A 3- to 5-fold fluorescent enhancement occures under simulated physiological conditions corresponding to the binding of the Zn2+ cation to the sensor, which inhibits a photo-induced electron transfer (PET) quenching pathway. The X-ray crystal structure of a 2:1 Zn2/ZP1 complex has been solved. It is the first structurally characterized example of a complex of fluorescein substituted with metal binding ligands.en_US
dc.description.abstract(cont.) Chapter 3 Improved Synthetic Methods for Preparing Fluorescein-Based Sensors and Application to the Preparation of ZP3 The synthetic precursor to ZP2 is a fluorescein dialdehyde prepared by a low yielding oxidation reaction. Several pathways for accessing versatile fluorescein scaffolds for Zn2* sensors have been explored. Although attempts to convert 4',5'- bis(bromomethyl)fluorescein dibenzoate to a diol were unsuccessful, substitution of the benzoate ester protecting groups of silyl ethers permitted the bromo groups to be activated toward nucleophilic substitution upon treatment with AgNO3. This method has been applied to the synthesis of ZP3 (Zinpyr-3, 9-(o-carboxyphenyl)-2-chloro-5-[2-[bis(2-pyridylmethyl)aminomethyl]-N-(p-anisidine)]-6-hydroxy-3-xanthanone). ZP3 binds Zn2*, but exhibits only a modest enhancement of the quantum yield from 0.04 to 0.05. Chapter 4 ZP4, an Improved Neuronal Zn2+ Sensor of the Zinpyr FamilyA second-generation fluorescent sensor for Zn2+ from the Zinpyr family, ZP4, has been synthesized and characterized. ZP4 (Zinpyr-4, 9-(o-carboxyphenyl)-2-chloro-5-[2-[bis(2-pyridylmethyl)aminomethyl]-N-methylaniline]-6-hydroxy-3-xan-thanone) is prepared by a convergent synthetic strategy developed from previous studies with these compounds. ZP4, like its predecessors, has excitation and emission wavelengths in the visible range (500 nm), a dissociation constant (Kd) for Zn2+ of less than 1 nM and a high quantum yields ...en_US
dc.description.statementofresponsibilityby Shawn C. Burdette.en_US
dc.format.extent289 p.en_US
dc.format.extent10115526 bytes
dc.format.extent10115326 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectChemistry.en_US
dc.titleInvestigation of zinc metalloneurochemistry with fluorescent sensors based on fluorescein platformsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc52715649en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record