An ultra-low voltage FFT processor using energy-aware techniques
Author(s)
Wang, Alice, 1975-
DownloadFull printable version (17.61Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Anantha Chandrakasan.
Terms of use
Metadata
Show full item recordAbstract
In a number of emerging applications such as wireless sensor networks, system lifetime depends on the energy efficiency of computation and communication. The key metric in such applications is the energy dissipated per function rather than traditional ones such as clock speed or silicon area. Hardware designs are shifting focus toward enabling energy-awareness, allowing the processor to be energy-efficient for a variety of operating scenarios. This is in contrast to conventional low-power design, which optimizes for the worst-case scenario. Here, three energy-quality scalable hooks are designed into a real-valued FFT processor: variable FFT length (N=128 to 1024 points), variable bit precision (8,16 bit), and variable voltage supply with variable clock frequency (VDD=1 80mV to 0.9V, and f=164Hz to 6MHz). A variable-bit-precision and variable-FFT-length scalable FFT ASIC using an off-the-shelf standard-cell logic library and memory only scales down to 1V operation. Further energy savings is achieved through ultra-low voltage-supply operation. As performance requirements are relaxed, the operating voltage supply is scaled down, possibly even below the threshold voltage into the subthreshold region. When lower frequencies cause leakage energy dissipation to exceed the active energy dissipation, there is an optimal operating point for minimizing energy consumption. (cont.) Logic and memory design techniques allowing ultra-low voltage operation are employed to study the optimal frequency/voltage operating point for the FFT. A full-custom implementation with circuit techniques optimized for deep voltage scaling into the subthreshold regime, is fabricated using a standard CMOS 0.18[mu]m logic process and functions down to 180mV. At the optimal operating point where the voltage supply is 350mV, the FFT processor dissipates 155nJ/FFT. The custom FFT is 8x more energy-efficient than the ASIC implementation and 350x more energy-efficient than a low-power microprocessor implementation.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2004. Page 170 blank. Includes bibliographical references (p. 165-169).
Date issued
2004Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.