MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-mission optimized re-planning in air mobility command's channel route execution

Author(s)
Koepke, Corbin G. (Corbin Gene), 1977-
Thumbnail
DownloadFull printable version (6.086Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Stephan E. Kolitz.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The United States Air Force's Air Mobility Command is responsible for creating a schedule and executing that schedule for a large-scale air mobility network that encompasses different mission areas. One of the mission areas is channel route. Channel route execution often experiences disruptions that motivate a need for changes in the current channel route schedule. Traditionally, re-planning the channel route schedule has been a manual process that usually stops after the first feasible set of changes is found, due to the challenges of large amounts of data and urgency for a re-plan. Other challenges include subjective trade-offs and a desire for minimal changes to the channel route schedule. We re-plan the channel route schedule using a set of integer programs and heuristics that overcomes these challenges. The integer programs' variables incorporate many of Air Mobility Command's operating constraints, so they do not have to be explicitly included in the formulations. The re-plan uses opportunities in the other mission areas and reroutes channel route aircraft. Finally, our methods can quickly find a solution, allow for "what-if' analysis and interaction with the user, and can be adapted to an evolution in Air Mobility Command's operations while the underlying models remain constant.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2004.
 
Includes bibliographical references (p. 143-145).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/17726
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.