MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust planning for heterogeneous UAVs in uncertain environments

Author(s)
Bertuccelli, Luca Francesco, 1981-
Thumbnail
DownloadFull printable version (8.343Mb)
Alternative title
Robust planning for heterogeneous Unmanned Aerial Vehicles in uncertain environments
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Jonathan P. How.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Future Unmanned Aerial Vehicle (UAV) missions will require the vehicles to exhibit a greater level of autonomy than is currently implemented. While UAVs have mainly been used in reconnaissance missions, future UAVs will have more sophisticated objectives, such as Suppression of Enemy Air Defense (SEAD) and coordinated strike missions. As the complexity of these objectives increases and higher levels of autonomy are desired, the command and control algorithms will need to incorporate notions of robustness to successfully accomplish the mission in the presence of uncertainty in the information of the environment. This uncertainty could result from inherent sensing errors, incorrect prior information, loss of communication with teammates, or adversarial deception. This thesis investigates the role of uncertainty in task assignment algorithms and develops robust techniques that mitigate this effect on the command and control decisions. More specifically, this thesis emphasizes the development of robust task assignment techniques that hedge against worst-case realizations of target information. A new version of a robust optimization is presented that is shown to be both computationally tractable and yields similar levels of robustness as more sophisticated algorithms. This thesis also extends the task assignment formulation to explicitly include reconnaissance tasks that can be used to reduce the uncertainty in the environment. A Mixed-Integer Linear Program (MILP) is presented that can be solved for the optimal strike and reconnaissance mission. This approach explicitly considers the coupling in the problem by capturing the reduction in uncertainty associated with the reconnaissance task when performing the robust assignment
 
(cont.) of the strike mission. The design and development of a new addition to a heterogeneous vehicle testbed is also presented.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2004.
 
Includes bibliographical references (p. 139-143).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/17757
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.