dc.contributor.advisor | Manuel Martinez-Sanchez and Oleg Batishchev. | en_US |
dc.contributor.author | Sullivan, Kay Ueda, 1980- | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. | en_US |
dc.date.accessioned | 2005-06-02T18:52:38Z | |
dc.date.available | 2005-06-02T18:52:38Z | |
dc.date.copyright | 2004 | en_US |
dc.date.issued | 2004 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/17839 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2004. | en_US |
dc.description | Includes bibliographical references (p. 77-79). | en_US |
dc.description.abstract | The fully kinetic Hall Thruster simulation built by [1] and used by [2] is further refined and used to obtain results for the P5 SPT Hall thruster at 3kw and 5kw operation. Performance data agree well with experiments [3], although very low values of anomalous diffusivity must be used for convergence. Particle temperatures and plasma potentials in the chamber are similar to experimental results, although charged particles and peak ionization rates are found further upstream than is observed experimentally. Electron transport mechanisms and the magnetic field configuration are analyzed for their physical consistency and effect on particle placement. Electron mobility rates are found to be physical although the reason for high Hall parameter is still unclear. Strong magnetic mirror effects, that are not reported in experimental data, are found in the simulation. Meanwhile, two sputtering models are added to the simulation and tested. A yield model based on [4]'s theories and implemented with [5]'s functions is found to agree well with experimental yield data for 300eV to 1000eV sources, but produces small yields at thruster operating conditions. | en_US |
dc.description.statementofresponsibility | by Kay Ueda Sullivan. | en_US |
dc.format.extent | 83 p. | en_US |
dc.format.extent | 2780425 bytes | |
dc.format.extent | 2788082 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | |
dc.subject | Aeronautics and Astronautics. | en_US |
dc.title | PIC simulation of SPT Hall thrusters : high power operation and wall effects | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics | |
dc.identifier.oclc | 56571041 | en_US |