Show simple item record

dc.contributor.advisorLawrence J. Stern.en_US
dc.contributor.authorZavala-Ruiz, Zarixia, 1977-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2005-06-02T18:53:21Z
dc.date.available2005-06-02T18:53:21Z
dc.date.copyright2004en_US
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/17842
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2004.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references (leaves 149-162).en_US
dc.description.abstractMajor Histocompatibility Complex (MHC) proteins are heterodimeric membrane glycoproteins that bind antigens in the form of short peptides within the cell and present them to the T cell receptors on the surface T cells. In this thesis work, the structural aspects of the human class II MHC protein HLA-DR1 in complex with different peptides and also in the peptide-free form were investigated. Biochemical, crystallographic, and immunological analyses of an unusually long peptide antigen derived from HIV-gag (p24) and its interaction with HLA-DR1 and a HIV-specific CD4+ T cell clone were studied. The HIV-gag (p24) peptide binds in an unexpected conformation, with its C- terminal region making a hairpin turn that bends back over the groove. The residues at the C-terminus are critical for T-cell recognition, and disruption of the hairpin turn abrogates the immune response. The results suggest a new mode of MHC-peptide-TCR interaction. A set of viral peptide analogs designed to increase binding affinity for HLA-DR while maintaining antigenic interactions with a virus-specific T cell receptor were designed, tested and analyzed. Ultimately, a N-methyl substitution at position 7 is shown to increase binding affinity by displacement of one of three water molecules bound between the MHC and peptide. The results have implications for design of peptido-mimetic vaccines, and are discussed in the broad context of other attempts to increase protein-ligand interaction through displacement of tightly bound water molecules. The role for the P10 shelf in peptide binding site was investigated. Crystallographic studies confirm the formation of a P10 shelf that is lined with highly polymorphic residues. Biochemical studies were conducteden_US
dc.description.abstract(cont.) on a series of peptides different at the P10 position on four HLA-DRl(P10) mutants showing that this shelf has some specificity and can be involved in the discrimination of peptides that bind to class II MHC proteins. Studies of the empty, peptide-free form of HLA-DR1 were conducted by NMR spectroscopy showing that the conformation of this empty form is not in a molten globule-like state and that in general is similar to that of the peptide-loaded form but with several differences. Preliminary characterization of the peptide-receptive and peptide-averse forms of the empty HLA-DR1 is described.en_US
dc.description.statementofresponsibilityby Zarixia Zavala-Ruiz.en_US
dc.format.extent208 leavesen_US
dc.format.extent10740843 bytes
dc.format.extent10766294 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectChemistry.en_US
dc.titleStructure studies of the human class II major histocompatibility complex protein HLA-DR1en_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc56571175en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record