MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The economics of biological methods of hydrogen production

Author(s)
Resnick, Richard J. (Richard Jay), 1971-
Thumbnail
DownloadFull printable version (5.436Mb)
Other Contributors
Massachusetts Institute of Technology. Management of Technology Program.
Advisor
Lester Thurow.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The costs to produce and utilize hydrogen are extremely high per unit of energy when compared to fossil fuel energy sources such as natural gas or gasoline. The cheapest hydrogen production approaches today are also the most polluting, as they use fossil fuels in even more inefficient ways than cars do. Renewable approaches to hydrogen production are- at best- three times more expensive per unit energy than the cost to produce the same amount of natural gas. The production of hydrogen through biological systems is one area of particularly promising research. There are countless biological systems that produce energy from sunlight, and countless others that produce energy from the metabolism of organic molecules such as glucose. Many microbial organisms produce hydrogen under certain conditions. Optimizing their innate ability to produce hydrogen and developing biohydrogen plants whose economics compete with current commercial plants are key hurdles that must be overcome. Economic models for the production of hydrogen through biological systems are examined in detail in this thesis. The key technical hurdles which drive the capital and production costs are identified. Fruitful areas of potential research are suggested to bring biological hydrogen production to commercial scale as rapidly as possible.
Description
Thesis (S.M.M.O.T.)--Massachusetts Institute of Technology, Sloan School of Management, Management of Technology Program, 2004.
 
Includes bibliographical references (p. 98-108).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/17885
Department
Management of Technology Program.; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Management of Technology Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.